Return to site

Pierce Chem 101 Lab Manual

broken image


General chem lab manual
101

Lab Manual & Supplies 'Chemistry in the Laboratory', by J.M. Dutch bros employee handbook checklist. Postma; 7th Edition; ISBN: 1-4292-1954-8 Helpful guides for lab report and notebook preparation can be found under the 'Laboratory Resources' tab. Full Practice Exam Available Here: Exam Solved with Answers Here:https://drive.goo.

Journal Publications

Chem 101 Lab Answers

Citation data: Google Scholar

Chem 101 Post Lab Answers

  • A unified dynamic programming framework for the analysis of interacting nucleic acid strands: enhanced models, scalability, and speedACS Synth Biol, 9(10):2665-2678, 2020.
  • Conditional guide RNAs: programmable conditional regulation of CRISPR/Cas function in bacterial and mammalian cells via dynamic RNA nanotechnologyACS Cent Sci, 5(7):1241-1249, 2019.
  • Signal transduction in human cell lysate via dynamic RNA nanotechnologyACS Synth Biol, 7(12):2796-2802, 2018.
  • Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robustDevelopment, 145:dev165753, 2018.
  • Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryosDevelopment, 145:dev156869, 2018.
  • Constrained multistate sequence design for nucleic acid reaction pathway engineeringJ Am Chem Soc, 39:3134−3144, 2017.
  • Mapping a multiplexed zoo of mRNA expressionDevelopment, 143:3632-3637, 2016.
  • Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearingDevelopment, 143:2862-2867, 2016.
  • Multiplexed miRNA northern blots via hybridization chain reactionNucleic Acids Res, 44(15):e129, 2016.
  • Sequence design for a test tube of interacting nucleic acid strandsACS Synth Biol, 4(10):1086–1100, 2015.
  • Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reactionCold Spring Harb Protoc, 2015(3):259-268, 2015.
  • Exquisite sequence selectivity with small conditional RNAsNano Lett, 14(8):4568-4572, 2014.
  • Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durabilityACS Nano, 8(5):4284-4294, 2014. (open access)
  • Developmental self-assembly of a DNA tetrahedronACS Nano, 8(4):3251-3259, 2014.
  • Conditional Dicer substrate formation via shape and sequence transduction with small conditional RNAsJ Am Chem Soc, 135(46):17322-17330, 2013. (open access)
  • Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy Proc Natl Acad Sci USA, 110(40):16163-16168, 2013.
  • Selective nucleic acid capture with shielded covalent probes J Am Chem Soc, 135(26):9691-9699, 2013. (open access)
  • Nucleic acid sequence design via efficient ensemble defect optimization J Comput Chem, 32:439-452, 2011.(pdf)(supp info)(supp structures)
  • NUPACK: Analysis and design of nucleic acid systems J Comput Chem, 32:170-173, 2011.(pdf)
  • Programmable in situ amplification for multiplexed imaging of mRNA expression Nature Biotechnol, 28:1208-1212, 2010.(pdf)(supp movie 1)(supp movie 2)(supp info)
  • Selective cell death mediated by small conditional RNAs Proc Natl Acad Sci USA, 107(39):16777-16782, 2010.(pdf)(supp info)
    Note: this paper has been retracted.
    Retraction for Venkataraman et al., Selective cell death mediated by small conditional RNAsProc Natl Acad Sci USA, 110(1):384, 2013. (pdf)
  • Programming biomolecular self-assembly pathways Nature, 451:318-322, 2008.
  • An autonomous polymerization motor powered by DNA hybridizationNature Nanotech, 2(8):490-494, 2007.
  • Thermodynamic analysis of interacting nucleic acid strandsSIAM Rev, 49(1):65-88, 2007.(pdf)
  • Topological constraints in nucleic acid hybridization kineticsNucleic Acids Res, 33(13):4090-4095, 2005.(pdf)
  • Triggered amplification by hybridization chain reactionProc Natl Acad Sci USA, 101(43):15275-15278, 2004.(pdf)
  • A synthetic DNA walker for molecular transportJ Am Chem Soc, 126:10834-10835, 2004.
  • Rewritable memory by controllable nanopatterning of DNANano Lett, 4(5):905-909, 2004.
  • An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots J Comput Chem, 25:1295-1304, 2004.(pdf)
  • Adjoint and defect error bounding and correction for functional estimatesJ Comput Phys, 200:769-794, 2004.(pdf)
  • Paradigms for computational nucleic acid designNucleic Acids Res, 32(4):1392-1403, 2004.
  • A partition function algorithm for nucleic acid secondary structure including pseudoknotsJ Comput Chem, 24(13):1664-1677, 2003.
  • Exact rotamer optimization for protein designJ Comput Chem, 24(2):232-243, 2003.(pdf)
  • Algorithm developments for discrete adjoint methodsAIAA J, 41(2):198-205, 2003.(pdf)
  • Protein design is NP-hardProtein Engineering, 15(10):779-782, 2002.(pdf)
  • Analytic adjoint solutions for the quasi-one-dimensional Euler equationsJ Fluid Mech, 426:327-345, 2001.(pdf)
  • Conformational splitting: a more powerful criterion for dead-end eliminationJ Comput Chem, 21(11):999-1009, 2000.(pdf)
  • Adjoint recovery of superconvergent functionals from PDE approximationsSIAM Rev, 42(2):247-264, 2000.(pdf)
  • An introduction to the adjoint approach to designFlow Turb Comb, 65:393-415, 2000.(pdf)
  • Optimum aerodynamic design using the Navier-Stokes equationsTheor Comput Fluid Dyn, 10:213-237, 1998.(pdf)
  • Efficient computation of unsteady viscous flows by an implicit preconditioned multigrid methodAIAA J, 36(3):401-408, 1998.(pdf)
  • Preconditioned multigrid methods for compressible flow calculations on stretched meshesJ Comput Phys, 136:425-445, 1997.(pdf)




broken image